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ABSTRACT

We consider several types of boundary conditions in the context of time domain models for

acoustic waves. Experiments with four different duct terminations (hardwall, free radiation,

foam, wedge) were carried out in a wave duct from which reflection coefficients over a wide

frequency range were measured. These reflection coefficients are used to estimate parameters
in the time domain boundary conditions and a comparison of the relative merits of the models
in describing the data is presented. Boundary conditions which yield a good fit of the inodel

to the experimental data were found for all duct terminations except the wedge.
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Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton,
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1. Introduction

Tiaditional techniques for modeling the sound fields in ducts and enclosures utilize
an impedance concept to model the boundary conditions. This approach is quite useful
for harmonic sound fields as well as quantification of steady state, random sound fields
in the frequency domain. However, in order to solve for a transient response, impedance
concepts which are defined only under steady state conditions in the frequency domain

have not proven useful. When useful, these impedance based models provide a way of
quantifying the acoustic properties of the boundary as a function of the various param-
eters characterizing the acoustic interface. Generally, an acoustic impedance boundary
condition is found to be a function of frequency and the spatial position along the bound-
ary. In addition, the boundary condition is based on assumptions of linearity as well as

that the boundary surface is locally reacting [1, p. 257-270]. The first assumption is
questionable at suffici,.ntly high sound pressure levels and the latter applies for resonator
designs but not for the more generally used bulk reacting materials such as foams and

fiberglass.

For time domain solutions, the imposition of such a boundary condition is awkward
except under severe restrictions such as a hard wall or a completely absorptive boundary
where the boundary is not a function of frequency. This is a common problem in deriving

time domain numerical solutions (e.g., finite difference, finite element) for a gene: al duct

propagation problem [2]. Since a general time domain excitation may be characterized by
a varied frequency content as well as spatial mode distribution, it is not straight forward

to apply these impedance boundary conditions in time domain models. If a simple spatial
structure such as an incident plane wave may be assumed, then it is known for a linear
acoustic response that the Fourier transform of the reflection coefficient may be convol ved

with the incident wave to derive the reflected wave. This concept was used by Bolton [2]
to quantify in a time domain measurement the impedance characteristics of foam type

materials. -

In order to develop state-space models for acoustic control problems, it is necessary 0f
to include boundary conditions coupled directly with the equations of motion. This may

be done, for example, by using simple continuum oscillator models to yield the frequency
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domain characteristics of typical acoustic boundary conditions ([1, p.263-264], [3], [4]). It

is the purpose of this work to examine the ability of such models to describe the acoustic

boundary conditions for a free end, a hard termination, an absorptive termination and

a typical foam acoustic trea.tment. This is done for a range of frequencies for which

the incident wave field is plane 11t,. for which the impedance (and reflection coefficient)

is not constant. Results are presented comparing the measured values as a function of

frequency to those modeled using a best fit to the data. It is found that different models

afford better representation of the data depending on the particular acoustic boundary

condition.

The efforts reported here are the first steps in the development of state space - time

domain models for use in control design problems related to active control of noise in

a closed cylinder (such as an aircraft fuselage). In such applications, one has (due to

the small distances involved) negligible medium damping of the acoustic pressure fields.

Since the major dissipative meclianism entails the partial absorption, partial reflection
that occurs at the pr.essure field/wall interface, it is important in the control of the

acoustic pressure field to model this dissipation accurately.
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2. Boundary conditions and reflection coefficients.

The physical quantities used for the description of acoustic wave motion in a fluid
are the acoustic pressure p (being the deviation from the mean pressure at equilibrium)
and the velocity potential 0. For waves of small amplitude, to nrst order both p and 0
satisfy the linear undamped wave equation with uniform speed of sound c in the fluid,
where c2 = 1/oK, p being the eouilibrium density of the fluid and K being the adiabatic

compressibilily of the fluid at equilibrium. The velocity potential 0 is a complex valued

function such that v(t,x) = - V 0(t,z) is the fluid's velocity at x at any time t. The

acoustic pressure is related to the velocity potential by p(t, x) = pot(t, x) [1, p. 243-257].
We consider three types of boundary conditions for the wave equation and derive

the corresponding reflection coefficients for simple-harmonic waves in a one-dimensional
wave-guide by insertion of the superposition of right and left propagating waves into the

boundary conditions. The reflection coefficients are of the form R = (z - pc)/(z + pc)

where z is the acoustic impedance of the boundary surface ([1], p. 259 ff.).

2.1 Oscillating boundaries. In [3], Beale considers a bounded region S1 C R' where

the interaction of the fluid with the boundary material at the (sufficiently smooth) bound-
ary &Il is modeled by a continuum of damped harmonic oscillators. Within fl, the velocity

potential 0(t, x) satisfies the wave equation

(2.1) Obtt(t,X) = c2 V 2 0(t,X), x E 11.

For every x E aff, the normal displacement S(t, x) of the boundary into the fixed deonqIain

Q is assumed to be independent of other parts of the boundary surface (a surface o7

local reaction, [1, p. 2601). With the effective mass m(x), the resistance d(x) and the
stiffness k(x) per unit area of the boundary surface, the interaction of the boundary and
the interior pressure is described by

(2.2) m(x)Stt(t,x) + d(x)St(t,x) + k(x)b(t,x) = -ppt(t,x), x E all.

In addition, from the assumption that the surface is impenetrable by the fluid it follows
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that the velocity of the fluid and of the boundary coincide, i.e.,

(2.3) 6b(t, x) = x.(t,z), x E 0fl

where 4,, = - denotes the outward (to the domain f0) normal derivative of 4.
The system (2.1) - (2.3) can be formulated as an abstract Cauchy problem for the

state u = (0, 0', 6 6t) in the space H = f1(f?) x L2(fl) x L2 (iq) x L2(Ofl). Here, as usual,
L2(M) denotes the Lebesgue space of square integrable functions on Al C_ R3 and R1 (fQ)
is the quotient of the Sobolev space H'(Sl) over the set of constant functions (Hn(fp) is
the space of functions having distributional derivatives up to order m in L2(f1)). With
ihe norm j" IW representing the energy of system (2.1) - (2.3) at any fixed time t, which
is given by

lul = f(pl v 012 + pc-ij' 1
2)dx + L0(kl6 12 + rni6tl)dS,

H is a Hilbert space. For u(t) E D(A), where

D(A) - {(u,,n 2 ,u3 ,U4 ) E HI V2 u, E L 2(f), u E H'(fl), u,. = Va4 on afl),
the system (2.1) - (2.3) can be written in the form u(t) = Au(t) with the linear operator

A defined by

A(u 1 , u2, u3 , V4) = (u2, c2 V 2 U1, U4, -(PU + ku3 + dU4)/m).

In [3] the well-posedness of system (2.1) - (2.3) is established by proving that A with
domain D(A) is the generator of a Co contraction semigroup on H, provided that m(x) >
0, k(x) > 0 and d(x) > 0 for each x E afl. An analysis of the spectrum is given and,

in particular, Beale's considerations reveal that one cannot obtain an exponential decay

bound for the semigroup even in the case where d > 0.
We com.ider the one-dimensional case Q = (-, 0) where the boundary at 0 is

characterized by three oscillator constants m,d, k E R. The general solution to the
wave equation in (-t, 0) is the superposition of right and ieft propagating waves. If

0(t,x) = F(t - x/c) + G(t + zic) and 5(t) are (sufficiently smooth) solutions to the
system (2.1) - (2.3) on (-, 0), they satisfy the condition

(2.4) n6,,(t) + d61(1) + k6(t) = -p6,(t, 0)
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(2.5)

Computing b and 6t by integration (resp. differentiation) of (2.5) we obtain

Si (F'(r) - G'(r))dr = -(F(t) - G(t))/c + const.

6b,(t) = -(F"(t) - a"(t))/c

where the constant is set to zero because for F(t) = G(t) = 0 the boundary should be

at equilibrium 6(t) 0= . Inserting this into (2.4), we find

(2.6) mG"(t) + (d + pc)G'(t) + kG(t) = mF"(t) + (d - pc)F'(t) + kF(t)

for the coupling of F and G by the oscillator at x = 0.

Suppose that F, the wave incident on the boundary, is a simple harmonic of frequency

w/2r, i.e., F(t-x/c) = exp{iw(t-x/c)}. Then the right side of (2.6) is a harmonic forcing

function for the linear oscillator (2.6). It follows (neglecting possible transients due to

initial conditions that we do not specify here, see e.g., [1, p. 45]) that the steady state of

G is harmonic with the same frequency w/27r, i.e., G(t + x/c) = R(w) exp{iw(t + x/c)}
with some complex constant R(w). Inserting F, G and their derivatives into (2.6) we then

obtain

(OSCIL) R(w) = 'w 2 - iw(d - pc) - k
mw2 - iw(d +pc)- k'

This formula for the reflection coefficient coincides with (6.3.8) of [1], where it is derived

from equating the acoustic impedance P/Vincident with the impedance z(w) = iwm +

d + k/iw of the oscillating boundary, which implies R(w) = (z(w) - pc)/(z(w) + pc).

To sum up, in the one-dimensional version of the model (2.1) - (2.3), a simple har-

monic wave is reflected at the boundary by reversion of its direction of propagation,

multiplication of its amplitude with I'R(w)l and a shift of its phase by argR(w). The

magnitude of R(w) is smaller than one if and only if d > 0. In this case the oscillating

toundary absorbs acoustic energy. In case d = 0 energy is conserved. In state space

(time domain) terminology, we have (see [3]) that for d > 0, A is dissipative and the
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infinitesimal generator of a Co contraction semigroup (i.e., S(t) - eAt where IS(t)IH 5 1)

so that acoustic energy can be absorbed at the boundary while if d = 0, S(t) is a unitary

group and no energy is absorbed at the boundary (energy is conserved). However, even

in the case that d > 0, one does not have an exponential decay bound for solutions (i.e.,

there does not exist an A > 0 such that tS(t)IH < Me-At).

2.2 Damped elastic boundaries. For d = 0, k = 0 the model (2.2), (2.3) together

with p = pot results in the boundary condition

m(x)p (t, x) + pp(t, x) = 0, x E O

for the acoustic pressure p. This is called a Robin or elastic boundary condition. To

include dissipation it is extended by adding a pt term, which gives systems that are

studied, for example, in [5], [6), [7]. In [7] the wave equation for the acoustic pressure

(2.7) Pt,(t, r) = c2 V2 p(t, x), X E Q

with damped elastic boundary conditions

(2.8) ,pet, x) + O,,(t,x) + cp(t, X) = 0, x E &I

is the model that is used for investigating active noise control techniques.

For a > 0, f6 > 0 the linear operator A defined by

A(f, g) = (g, c2 V 2 f)

with domain

D(A) = {(f,g) E H 2(nj) x H1 (n1)Iaf + Pg + cf, = 0 on ifn}

is the generator of a Co contraction semigroup corresponding to problem (2.7) - (2.8) with

the state (p, Pt) in the space H' (fl) x L2(j2) taken with the HI (n) K L2(0)-equivalent norm

I" I'- corresponding to the inner product ((fA,g),(f 2 ,9 2))% = f lf2 + f Vfl 7 f2 +an

6



f 9192 (see [7]). Note that the semigroup is not a contraction in the usual HI (,Q) x L2(SI)
norm.

To obtain reflection coefficients 'for harmonic waves in the one-dimensional case Q
(-t, 0) we insert the superposition p(t, z) = F(t - x/c) + G(t + x/c) into the condition
ap(t, 0) + 3pt(t, 0) + cp.(t, 0) = 0, and this yields

(I + #3)G'(t) + aG(t) = (1 - /)F'(t) - aF(t).

Thus, if the incident wave F(t - x/c) = exp{iw(t - x/c)} is a simple harmonic, so is
the reflected wave G(t + x/c) = R(w) exp{iw(t + x/c)} (aside from transients) with the
reflection coefficient
(ELAST) R(w) = iw(1 - ) - a

iw(1 + +a

This equals (z(w) - pc)/(z(w) + pc) with z(w) = iwpc/(a + iw/3).
This shows that (ELAST) models a boundary surface with specific acoustic impedance

[1, p. 261] given by ( = z/pc = iw/(a + iwo). The magnitude of the reflection is smaller
than 1 if and only if /3 > 0. In the case /3 = 0 the imr lance is purely imaginary and
the amplitude of the reflected wave is equal to the ampfitude of the incident one. In
the state-space or time domain formulation we have that for 9 > 0 the reflecting surface
produces a contraction semigroup if the norm I" - t for H'(Q) x L2(Sl) as indicated above
is chosen. In actual fact, if 9 > 0 the damping is sufficiently strong so that one has an
exponential bound in the 'H induced operator norm: IS(t)i, _< Aoe- Aot for Mo,yo > 0;
see [7].

2.3 Frequency-independent boundaries. For m = 0 and k = 0, the model (2.2),
(2.3) reduces to

(2.9) -d(x)#.(t,x) = p~t(t,x), x EOP.

This equation states that the acoustic impedance P/Vincidit at the boundary equals d(x).
Equation (2.1) with boundary conditions of the form (2.9) is the subject of many pub-
lications throughout the literature on the wave equaion. For aspects concerning well-
posednes;, decay of solutions or control problems see for example [8], [9], [10]. The
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report [11] summarizes some results on 'he one-dimensional case Q = (-t,0) of (2.1)
with boundary conditions (which we refer to as impedance boundary conditions) of the

form

(2.10) ,(t, 0) + Cc(t,0) = 0

with complex specific acoustic impedance C of the boundary surface. In case Re > 0
the operator

A(w,p) = c(p,w")

with domain

D(A) = {(w,p)I(w,p) E H 2(-t,O) x H1 (-t,O),p+Cw, = Oat -t,O}

generates a Co contraction semigroup S(t) corresponding to the state (co, Ot) in a space
HE. The Hilbert space HE is the product of the quotient space /t1 (-C, 0) (i.e., the

quotient of H1 over the set of constant functions) with L2(-t, 0). The norm j(wp)HE

IW' 2 + JpJ2 in HE corresponds to the acoustic energy of the state.

Substituting 0(t,x) = F(t - x/c) + G(t + x/c) into (2.10), we obtain G(t) = {(¢ -
1)1(C + 1)}F(t) + const. (The constant here is set to 0, because F - 0 should imply
G -= 0 (passive boundary)). Thus, the reflection coefficient for this model

(IMPED) R(w) = R- -1

does not depend on the shape of the reflected waves. Moreover, Re " _ 0 is equivalent
to IR < 1, with IR1 < 1 if and only if Re C > 0. Thus, no acoustic energy is absorbed
at the boundary if C is purely imaginary. If C = 1, then R = 0 and we have a totally
absorbing boundary. In the state space formulation (see [11) we find that for Re C >_ 0,
A is dissipative and generates a contraction semigroup S(t). Indeed, for ( 0 ±1, we
can argue that A is in fact a spectral operator and S(t) can be expanded in a Riesz
basis of eigenfunctions. For Re C" > 0, energy is absorbed at the boundary and we

obtain an exponential bound for S(t). For ( = 1, the spectrum of A is empty and
moreover, we can argue that we have a totally absorbing boundary. Thus, we find that
the state space formulation and the usual frequezicy domain considerations lead to similar

characterizations in terms of the parameter (.



3. Experiments and Data Analysis

3.1 Experimental Procedures. The procedure used to determine the reflection coef-
ficient of the various duct termination conditions is similar to that outlined in reference
[12]. The model for planar wave propagation in a duct represents the pressure anywhere
in the duct as defined by the following equation.

(3.1) p(t,x) = A(w){exp[i(wt - kx)] + R(w)exp[i(wt + kx)]}

In this expression, t and x represent the temporal and spatial variables, respectively,

p is the measured acoustic pressure relative to a common phase reference, A(w) is the
unknown incident wave amplitude and R(w) is the unknown complex reflection coefficient.
The wave number, w/c, is represented by k and w is the angular frequency.

By measuring the pressure, p(t, xj), at a number of axial locations, xj, an over deter-
mined set of equations may be formed using Equation (3.1) and solved in a least squares
sense. The variables solved for in this analysis are the positive and negative complex
wave amplitudes represented by A(w) and A(w)R(w). A schematic of the test configura-

tion used in three of the test cases is shown in Figure 1. Ten microphone locations were
utilized at five different axial locations. By making measurements in pairs on directly
opposite sides of the duct and adding the two complex measurements, the contribution
due to the first higher order mode is summed out. The resulting measurements at the

five axial locations noted in the figure are used in conjunction with Equation (3.1).

The data was acquired in the frequency domain using pseudo-random excitation of
the acoustic sources shown in the left part of Figure 1. This harmonic excitation allowed

the wave field to be defined with two hertz resolution over a bandwidth to 650hz. By
exciting the duct with symmetrical excitation on opposite sides of the duct, the dominant
wave generated was planar even above the cut-on frequency of the first cross mode at

325hz. This in combination with the microphone averaging technique outlined above
allowed the frequency range to extend to the cut-on frequency of the 2nd higher order

mode at 650hz.
For this configuration, three termination conditions were investigated. The first is

a near hardwall condition attained by terminating the duct with a 0.5 inch thick reinforced
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Side viewIC) '24.0

Loudspeakers Mcrophones(10)/ Foam

Top view II

53.5

2.5 j~*30.5 +83.8

1 -" 7 1 1 .2 5 .1 .,,

Fiure 1

aluminum plate. For a true hardwall termination, the reflection ccefficient would be

expected to be invariant with frequency and be purely real with a value of 1.0. This

panel has a fundamental resonance at about 250hz and another at 450hz and therefore

appears somewhat soft at these frequencies where minor variations from the hardwall

condition are observed in the data. Thie data in Figure 2 (in all figures, the data will be

given by a soid line) reveals a reflection coefficient with real part varying from 1.0 at

20hz to about 0.8 at 600hz, while the imaginary part is near zero with variations between

-0.1 and 0.1 in the range 20hz to 600hz.
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The second case was for free radiation from an open duct. This case displays a

frequency dependence as a plane wave at low frequency would reflect from a pressure

release boundary with a purely real reflection coefficient of -1.0. However, at the high

frequency limit, all of the propagating energy wave would beam out of the end of the open

duct and the reflection coefficient should decrease to zero. The real part of the reflection

coefficient data shown in Figure 3 exhibits this general trend. However, the imaginary

part of the measured data varies over a positive range from 0.2 to 0.6. This behavior

may be attributed to the presence of several reflecting surfaces outside of the duct but

in the general vicinity of the duct exit. Also, the room was generally reverberant and

may have exhibited some modal response.

The final case tested in the duct of Figure 1 was an eggcrate foam referred to as a

wedge. This foam was 5.08cm thick from tip to base and was backed by an additional

10.16cm of closed cell foam. The back side of this foam was left open to the laboratory

space. It is hard to anticipate the exact behavior of this type of termination condition.

However, it is expected to have a generally complex reflection with a reflection coefficient
that is close to 1 at low frequencies and that decreases as the frequency is increased. The

data for this case is shown in Figure 4 and may be generally regarded to exhibit the

correct trends. There is however a noticeable dip in the real part at 77hz. The cause for

this low frequency behavior is not clear.

In addition to the above cases, the material properties of a one inch thick acoustic

foam backed by a hard surface were investigated using the impedance tube facility of

reference [12]. This facility is designed for this type of measuremen, and better estimates

of the material acoustic properties are to be expected. Data (depicted in Figure 5) from
these expeliments is referred to as the foam termination data below, and the general

trends attributed to the wedge case above may also be attributed to this case.

3.2 Computational Procedures. In order to evaluate the correspondence of the

mathematical models of Section 2 with the measured data described in Se-Ction 3.1,
the "difference" between the m..asL:..ements for varying frequency f = w/2r and the

models' reflection coefficients R(w) was considered. By "difference" any kind of numerica
variation between the measurements and the values R(w,) could be taken. For example,
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if the phase of the reflected waves is of main interest (which in some sense is the case for

noise suppression based on destructive interference), then "difference" could be based on

deviation of the model's phase shifts arg R from the measured ones.

Here, we choose as "difference" the .istance of the measurements to the models'
reflection coefficients as numbers in the complex plane. This seems to be a neutral choice

in terms of a general comparison. To determine the best possible fit of the functions R(w)

to the data RJi, we minimized the functional

n

SSQ = EZIRj -R(wD1I'
j=1

by variation of the parameters in R(w). Here n is the number of measurements R at

frequencies fj = wj/27r within the range of frequency considered. Because the data for

the foam termination was taken in the facility of [12] at only discrete frequencies, there
were only n = 23 frequency data points available between 20hz and 1000hz. For the

other three experiments the range of frequency considered is 20hz < fj _< 600hz with

n = 291. For each combination of a model with a duct termination, the minimal value of

SSQ is an evaluation of the quality of the correspondence of the model with the data.

Note that the data, that is derived from pressure measurements, is also applicable to
the reflection coefficients for the velocity potential, because the right and left propagating

components of the pressure waves are proportional to the time derivative of the corre-

sponding components of the velocity potential i.e., if 0(t, x) = F(t-x/c)+G(t+x/c) is the
velocity potential, then p(t, x) = pet(t, x) = p[F'(t - x/c) *- G'(t + x/c)], which is consis-

tent with Equation (3.1) if we choose F( ) = w exp(iwC) and G( ) = A(R) exp(iw6).
IPW
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4. Results and Discussion
The purpose of this work was to evaluate the ability of the proposed models to

characterize a variety of real acoustic boundary conditions. As such there was no attempt

to "smooth" the data by using analytical models or "perfect conditions" such as absolute

hardwall or resonator impedance conditions in place of mcasured data. The data was

collected for some general conditions which might be expected to be encountered in

practice.

For the minimization of the sum of squares SSQ over the parameters (n, d, k) E

R 3 and (a, f) E R 2 we used LMDIF1 of the FORTRAN package MINPACK in the

public-domain library NETLIB at Argonne National Laboratory. This routine is an

implementation of the Levenberg-Marquardt algorithm with implicit scaling and optimal

choice for the correction steps [13]. Starting from an initial estimate for the parameters,

the algorithm converges to a local minimum. A systematic search with a variety of

initial estimates and the use of graphics indicates that in all examples the numbers

listed in Table 2 with corresponding parameters in Table 1 are the unique global minima
of SSQ. In one case, for (OSCIL) and the hardwall data, a second local minimum

10 x SSQ/n = 4.5075 is located at m = -1708.4, d = 9.3346, k = -15384.

Considering (IMPED), a simple algebraic argument shows that the gradient of SSQ
wi'h respect to the two real parameters (Re C, Imr) E R 2 vanishes if and only if

Re R = Re Rj/n and ImR = ImRj/n. Thus, to get the optimal least-squares

fit for (IMPED), we compute the mean values of Re Rj and ImRj and then C according

to C= (1 + R)/(1 - R).

Hard Free Wedge Foam Units
m 1028.0 114.92 -36.493 85.621 10- 3 kg/m 2

OSCIL d 8.6669 0.1311 0.2189 1.4551 103kg/m 2s
k 13607. -8.4717 -788.62 3851.9 103kg/m 2 s2

ELAST a -2.7985 2178.4 154.17 -16.054 1/s
_ _ 34.610 761.85 886.44 146.15 10-3

IMPED Re( 28.340 0.3781 0.8073 4.8860 1
Im( -3978.6 449.95 717.72 -3349.2 10- 3

Table 1: Minimizing parameters
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The corresponding minimal sums of squares divided by the number of data n are given

in Table 2.

103 x SSQ/n Hard Free Wedge Foam
OSCIL 3.8983 103.735 51.586 5.116
ELAST 4.8153 7.819 261.820 54.729
IMPED 4.7972 134.387 137.038 36.593

Table 2: Residual sum of squares

The experimental data (measured reflection coefficients - real and imaginary parts -

as a function of frequency) are represented by solid lines in Figures 2 - 5 for hardwall,

free radiation, wedge and foam terminations, respectively. The reflection coefficients

corresponding to the models with boundary conditions (OSCIL), (ELAST), (IMPED)

evaluated at the optimal parameters given in Table 1 are plotted in each figure by dashed,

dotted, dashed-dotted lines, respectively.
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Free Radation: Rteal(R(w))
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Wedge Termination: ResI(R(w'))
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Foam: ReaI(R(w))
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As might be expected, none of the above three boundary conditions can be adjusted
to all four of the boundary surfaces considered. The models for the impedance or re-
flecting conditions are also limited in the degrees of freedom that they may exhibit.
The impedance condition must by it's definition be frequency independent. The elastic
condition models only the prescribed frequency variation on thc imaginary component.
The oscillating boundary may model a somewhat more general condition as the resonant
behav'ior may be tuned to any frequency and dampe as necessary. However, one must
keep in mind that there are only 3 real constants to adjust to model a general frequency
dependence. It is clearly too much to expect that one sing!e boundary condition will
model any general acoustic boundary termination.

But there are cases where the model curves fit to the data quite well: (OSCIL) for
hardwall (f < 450hz) and foam termination and (ELAST) for free radiation.

The frequency-dependence of the measured reflection coefficients being a structural
feature of the data (except for the hardwall with f _ 450hz), the frequency-independent
boundary condition (2.10) is not an appropriate model for the terminations free, wedge,
and foam, unless only a narrow range of frequency is considered.

" four examples the unconstrained minimization of SSQ renders negative parame-
ter- (in, k, a < 0) which contradicts their physical definition and the assumptiois used
in the proofs of well-posedness of the models. Moreover, in these four cases the fit of the
model functions to the data is not satisfying and would be worse if the positivity condi-
tions were enforced in a minimization procedure with constraints. Thus, the oscillator
boundary condition appears not applicable for free radiation or wedge termination nor
is the damped elastic boundary condition suited for hardwall or foam termination.

The set of data from the wedge termination experiment displays a pronounced mini-
mum at 65hz and then decreases nearly linearly from about 150hz thru 600hz. The. phase
of the data set suffers the same anomaly near 65hz and then increases linearly from about
40 degrees to 180 degrees at 600hz. Considering this variation, it is not surprising that
the algebraically simple functions R(w) cannot mimic this data curve when only two or
three parameters can be adjusted. But this is not the main reason for the difficulties
with the wedge data. When consideration of the data is restricted to the range 250hz
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< f < 600hz, where it is simply decreasing, the optimal mass and stiffness in (OSCIL)
are again negative (the fit of Re R and Im P increases, 10' x SSQ/n = 7.049) and

the optimal fit of (ELAST) again is not physically realistic (alpha, beta again positive,
103 x SSQ/n = 76.009). This data was modeled assuming that the reflection plane was

at the duct outlet which corresponds to the back of the foam layer. From an acoustic

standpoint, the face of the wedges might be considered a more physically intuitive posi-

tion to take as a reference. This however, only changes the phase response, increasing the

slope significantly. Modeling the data in this way resulted in similar non-physical models

and the data fit was even worse. These results suggest that the algebraic structure of

the models considered he,- does not well represent the physical mechanisms inherent in

the wedge boundary termination.
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5. Conclusions

In summary, the unconstrained least-squares fits suggest that among the boundary

conditions considered, several might be appropriate for use in describing the reflection

of harmonic waves by the duct terminations over the range of frequency considered. For

the hardwall termination, the (OSCIL) boundary condition with physically reasonable

parameter values provides a good agreement of reflection coefficients in the range f _<

450hz. The (OSCIL) boundary condition is also a reasonable choice for use with the foam

termination. For the free radiation termination, the damped elastic conditions (ELAST)

offer a good approximation of model to the experimental data. When the reflection of

waves of arbitrary shape is to be modeled, a more detailed investigation of experimental

data for such waves could give additional information on the quality of these boundary
conditions over a wider range of frequency.

For the wedge termination case the poor least-squares fits discussed above suggest

that a more specific model for the interaction of the (non-flat) boundary surface with

the interior field is needed to cover the experimentally observed phenomena.
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